Interactions Between Herbal Medicines and Prescribed Drugs
A Systematic Review

Angelo A. Izzo and Edzard Ernst

1 Department of Experimental Pharmacology, University of Naples 'Federico II', Naples, Italy
2 Department of Complementary Medicine, School of Postgraduate Medicine and Health Sciences, University of Exeter, Exeter, United Kingdom

Abstract

Despite the widespread use of herbal medicines, documented herb-drug interactions are sparse. We have reviewed the literature to determine the possible interactions between the seven top-selling herbal medicines (ginkgo, St John’s wort, ginseng, garlic, echinacea, saw palmetto and kava) and prescribed drugs. Literature searches were performed using the following databases: Medline (via Pubmed), Cochrane Library, Embase and phytobase (all from their inception to July 2000). All data relating to herb-drug interactions were included regardless of whether they were based on case reports, case series, clinical trials or other types of investigation in humans. In vitro experiments were excluded. Data were extracted by the first author and validated by the second author. 41 case reports or case series and 17 clinical trials were identified.

The results indicate that St John’s wort (Hypericum perforatum) lowers blood concentrations of cyclosporin, amitriptyline, digoxin, indinavir, warfarin, phenprocoumon and theophylline; furthermore it causes intermenstrual bleeding, delirium or mild serotonin syndrome, respectively, when used concomitantly with oral contraceptives (ethinylestradiol/desogestrel), loperamide or selective serotonin-reuptake inhibitors (sertaline, paroxetine, nefazodone). Ginkgo (Ginkgo
Herbal medicines have become a popular option in healthcare. The seven best-selling herbal medicines in 1998 were ginkgo (retail sales in mainstream US market = $US150 million; percent increase compared with previous year = 67%), St John’s wort ($US140 million; 190%), ginseng ($US96 million; 11%), garlic ($US84 million; 17%), echinacea ($US70 million; 42%), saw palmetto ($US32 million; 74%), and kava ($US17 million; 462%).[1] The data are even more impressive for Europe; for instance, the global market for all herbal and homeopathic remedies amounted to $US4.0 billion in North America and $US6.7 billion in Europe.[2] There is growing evidence for the efficacy of these herbal medicines.[3,4] However, safety issues associated with these treatments remain under-researched.[5] The fact that herbal medicines are associated with adverse events is widely appreciated.[2,4] Another area destined to gain importance is that of herb-drug interactions.[6]

All herbal medicines are mixtures of more than one active ingredient. In many cases it is uncertain which or how many constituents are pharmacologically important. On one hand, the multitude of active ingredients obviously increases the likelihood of interactions. On the other hand, this multitude combined with the fact that herbal medicines are of variable and often undefined composition renders any analysis of interactions a complex and difficult task. Because users of herbal medicines tend to have chronic conditions for which they often take prescribed drugs concomitantly, interactions are likely.[7] Thus, a review of this area is timely and relevant.

The aim of this article is to systematically review the existing clinical data on suspected interactions between the above-named herbal medicines and conventional drugs.

1. Systematic Review

1.1 Methods

Electronic literature searches were made using the following databases: Medline (via PubMed), Embase, Cochrane Library (2000 issue 2) and phytobase (all from their inception to July 2000). The search terms were the seven selected medicinal plants (English and German common names as well as botanical denominations) in combination with the terms ‘drug interaction’, ‘adverse-effects’, ‘side effects’, ‘adverse drug reaction’, ‘safety’, and ‘toxicity’. Our search included alcohol (ethanol), as it can have therapeutic uses (i.e. treatment of poisoning by methanol).[8] Recent books[9-11] and articles[12-18] on herb-drug interactions or herbalism,[19-23] and recent reviews of the seven selected medicinal plants[24-30] were also searched for further relevant information. Additional publications were identified by checking all reference lists and by searching our files. Ten major manufacturers of herbal products, eight experts and 24 organisations related to medical herbalism were also contacted.
and asked for any information held on herb-drug interactions. No language restrictions were imposed.

All clinical reports on interactions were read and relevant data were extracted by the first author into predefined tables and validated by the second author. *In vitro* experiments were usually excluded.

1.2 Results

Forty one case reports or case series in 23 publications[31-53] and 17 clinical trials[54-70] were located. Key data from these publications are summarised in table I (case reports and case series) and table II (clinical trials). Obviously case reports have to be interpreted with great caution, as causality is not usually established beyond reasonable doubt.

2. Discussion

2.1 Garlic

Garlic (*Allium sativum*) is being promoted to lower cholesterol and blood pressure, delay atherosclerotic processes and improve circulation.[22] It has complex cardiovascular effects including antiplatelet activity.[24] Two case reports suggested that concomitant use of warfarin and garlic was followed by an increase in INR (international normalised ratio).[32] Other case reports highlighted its potential for increasing the risk of postoperative bleeding.[71,72] Animal[73] and clinical studies[74] imply hypoglycaemic effects, which could explain the fall in glucose levels in a Pakistani woman taking chloropropamide and a curry containing garlic and karela (*Momordica charantia*).[31] A clinical trial[54] suggested that garlic changes some pharmacokinetic variables of paracetamol (acetaminophen) after 1 to 3 months’ treatment. The precise mechanism of this interaction is presently not known.

2.2 Ginkgo

Ginkgo (*Ginkgo biloba*) is used mainly for memory loss, Alzheimer’s disease and circulatory disorders.[25] Its constituents (ginkgolides, bilobalides and others) have antiplatelet activity and are platelet activating factor receptor antagonists.[25] Two case reports demonstrate that patients taking warfarin[33] or aspirin[36] have experienced severe spontaneous bleeding after self-prescribing ginkgo at recommended doses. Spontaneous bilateral subdural haematomas associated with long-term ginkgo ingestion have been reported.[75] The patient had already been prescribed paracetamol and a very brief trial of ergotamine/caffeine. It is unlikely that the adverse effect was due to the concomitant use of paracetamol (or ergotamine/caffeine) as the patient had a headache before taking these drugs; moreover, these prescribed drugs do not possess antiplatelet or anticoagulant activity.

Gingko is also a peripheral vasodilator.[25] Surprisingly, an elderly patient was found to have a further increase in blood pressure after taking ginko while receiving a thiazide diuretic (not specified in the original paper) for hypertension.[34] There is no rational pharmacological mechanism to explain this unusual interaction.

A patient with Alzheimer’s disease fell into a coma after taking a combination of trazodone and ginkgo.[35] Ginkgo flavonoids increase the production of 1-(m-chlorophenyl) piperazine (mCPP), an active metabolite of trazodone, which releases γ-aminobutyric acid (GABA) through an agonistic action on presynaptic serotonin 5-HT2 and α2-adrenergic receptors located on GABAergic nerve terminals. In addition, flavonoids induce a further enhancement of GABAergic activity by acting on benzodiazepine binding sites.[76] and they also increase the activity of cytochrome P450 (CYP)3A4,[77] which metabolised trazodone to mCPP.

Ginkgo did not modify hormonal plasma levels (follicle-stimulating hormone, luteinising hormone, thyroid-stimulating hormone and prolactin) after stimulation tests with luteinising hormone-releasing hormone and thyrotropin-releasing hormone;[56] nor did it modify antipyrine (a substrate probe to study microsomal enzyme induction) half-
Table I. Case reports and case series of possible interactions between herbal medicines and prescribed drugs

<table>
<thead>
<tr>
<th>Herbal medicine</th>
<th>Dosage/duration</th>
<th>Sex (M/F)</th>
<th>Diagnosis</th>
<th>Prescribed drug Dosage/duration</th>
<th>Concomitant drugs</th>
<th>Clinical result of interaction</th>
<th>Possible mechanism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Garlic[^31^] a curry containing garlic and karela</td>
<td>40 y</td>
<td>F</td>
<td>Diabetes mellitus</td>
<td>Chlorpropamide[^b^]</td>
<td>None</td>
<td>Hypoglycaemia</td>
<td>Additive effect on glucose levels (garlic has antidiabetic activity)</td>
</tr>
<tr>
<td>Garlic[^32^]</td>
<td>2 yrs[^a^]</td>
<td></td>
<td></td>
<td>Warfarin[^b^]</td>
<td>None mentioned</td>
<td>Increased INR; increase in clotting time</td>
<td>Additive effect on coagulation mechanisms (garlic has antiplatelet activity)</td>
</tr>
<tr>
<td>Ginkgo[^33^] (concentrated 50:1 extract) 40 mg bid for 1 wk</td>
<td>70 yrs</td>
<td>M</td>
<td>Coronary-artery bypass</td>
<td>Aspirin 325 mg/d for 3 y</td>
<td>None</td>
<td>Spontaneous haemorrhage</td>
<td>Additive inhibition on platelet aggregation (ginkgo has antiplatelet activity)</td>
</tr>
<tr>
<td>Ginkgo[^34^] 1 wk[^b^]</td>
<td>Elderly[^a^]</td>
<td></td>
<td>Hypertension</td>
<td>Thiazide diuretic 1 wk[^b^]</td>
<td>None mentioned</td>
<td>Increase in blood pressure</td>
<td>Not known</td>
</tr>
<tr>
<td>Ginkgo[^35^] (EGb716) 80 mg bid for 3 d</td>
<td>80 yrs[^a^]</td>
<td>F</td>
<td>Alzheimer’s disease</td>
<td>Trazodone 20 mg bid for 3 d</td>
<td>Bromazepam, donazepil, Vitamin E, (in the past 3 mo, but not concomitantly with ginkgo)</td>
<td></td>
<td>Possible increase of GABAergic activity by ginkgo flavonoids</td>
</tr>
<tr>
<td>Ginkgo[^36^] 2 mo[^b^]</td>
<td>78 yrs[^a^]</td>
<td>M</td>
<td>Coronary artery bypass and progressive dementia</td>
<td>Warfarin 5y[^b^]</td>
<td>None mentioned</td>
<td>Intracerebral hemorrhage</td>
<td>Additive effect on coagulation mechanisms (ginkgo has antiplatelet activity)</td>
</tr>
<tr>
<td>Ginseng[^37^] ginseng tea</td>
<td>64 yrs</td>
<td>F</td>
<td>Depression</td>
<td>Phenelzine 45-60 mg/d[^b^]</td>
<td>None mentioned</td>
<td>Insomnia, headache, tremulousness</td>
<td>Increased cAMP levels by ginsenosides</td>
</tr>
<tr>
<td>Ginseng[^38^]</td>
<td>42 yrs</td>
<td>F</td>
<td>Depression</td>
<td>Phenelzine 45 mg/d[^a^]</td>
<td>Bee pollen, triazolam, lorazepam</td>
<td>Manic symptoms (irritability, hallucinations)</td>
<td>Increased cAMP levels by ginsenosides</td>
</tr>
<tr>
<td>Ginseng[^39^] (Ginsana[^a^]) 3 capsules tid for 2 wks</td>
<td>47 yrs[^a^]</td>
<td>M</td>
<td>Heart valve replacement</td>
<td>Warfarin 5 mg/d for 5 yrs; 7.5 mg each Tuesday</td>
<td>Dilizazem, nitroglycerin, salsalate</td>
<td>Decreased INR (from about 3.3 to 1.5)</td>
<td>Not known</td>
</tr>
<tr>
<td>Kava[^40^] 3d[^b^]</td>
<td>54 yrs[^a^]</td>
<td>M</td>
<td>Lung fibrosis</td>
<td>Alprazolam[^b^]</td>
<td>Ciclosporin[^b^]</td>
<td>Lethargic and disoriented state</td>
<td>Additive effect on GABA receptors and release</td>
</tr>
<tr>
<td>Kava[^41^] (Kavasporal[^a^]) 150 mg bid for 10 d</td>
<td>76 yrs[^a^]</td>
<td>F</td>
<td>Parkinson’s disease</td>
<td>Levodopa 500 mg/d for 8 y</td>
<td>Benserazide</td>
<td>Increase in the duration and number of ‘off’ periods</td>
<td>Dopamine antagonism</td>
</tr>
<tr>
<td>St John’s Wort[^42^] 300 mg bid</td>
<td>61 yrs[^a^]</td>
<td>F</td>
<td>Heart transplant</td>
<td>Ciclosporin[^b^]</td>
<td>None mentioned</td>
<td>Lowering of blood ciclosporin levels; rejection episode</td>
<td>Hepatic enzyme induction</td>
</tr>
<tr>
<td>St John’s Wort[^42^] 300 mg tid[^b^]</td>
<td>54 yrs[^a^]</td>
<td>F</td>
<td>Lung fibrosis</td>
<td>Ciclosporin[^b^]</td>
<td>Prednisolone</td>
<td>Lowering of blood ciclosporin levels</td>
<td>Hepatic enzyme induction</td>
</tr>
<tr>
<td>St John's wort</td>
<td>Patients</td>
<td>Disease</td>
<td>Drug</td>
<td>Other Drug</td>
<td>Side Effect</td>
<td>Interaction</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>----------</td>
<td>---------</td>
<td>------</td>
<td>------------</td>
<td>-------------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>St John's wort</td>
<td>30</td>
<td>Kidney transplant</td>
<td>Cyclosporin</td>
<td>Other unreported drugs</td>
<td>Lowering of blood cyclosporin levels (47%)</td>
<td>Hepatic enzyme induction</td>
<td></td>
</tr>
<tr>
<td>St John's wort</td>
<td>10</td>
<td>Liver transplant</td>
<td>Cyclosporin</td>
<td>None mentioned</td>
<td>Lowering of blood cyclosporin levels (49%); rejection episode in 1 pt</td>
<td>Hepatic enzyme induction</td>
<td></td>
</tr>
<tr>
<td>St John's wort</td>
<td>5</td>
<td>Kidney transplant</td>
<td>Cyclosporin</td>
<td>None mentioned</td>
<td>Lowering of blood cyclosporin levels</td>
<td>Hepatic enzyme induction</td>
<td></td>
</tr>
<tr>
<td>St John's wort</td>
<td>F/mid-twenties</td>
<td>None reported</td>
<td>Cyclosporin</td>
<td>None mentioned</td>
<td>Lowering of blood cyclosporin levels (75%)</td>
<td>Hepatic enzyme induction</td>
<td></td>
</tr>
<tr>
<td>St John's wort</td>
<td>61y</td>
<td>Heart transplant, mild depression</td>
<td>Cyclosporin</td>
<td>Azathioprine, corticosteroids</td>
<td>Lowering of plasma cyclosporin levels to 95 g/L; rejection episodes</td>
<td>Hepatic enzyme induction</td>
<td></td>
</tr>
<tr>
<td>St John's wort</td>
<td>63y</td>
<td>Heart transplant</td>
<td>Cyclosporin</td>
<td>Azathioprine, corticosteroids</td>
<td>Lowering of blood cyclosporin levels to 87 g/L; rejection episode</td>
<td>Hepatic enzyme induction</td>
<td></td>
</tr>
<tr>
<td>St John's wort</td>
<td>F/39y</td>
<td>Depression and migraine</td>
<td>Loperamide</td>
<td>Valerian</td>
<td>Brief episode of acute delirium (disoriented, agitated, confused state)</td>
<td>Potentiation of MAO inhibition</td>
<td></td>
</tr>
<tr>
<td>St John's wort</td>
<td>F</td>
<td>None reported</td>
<td>Oral contraceptive</td>
<td>None mentioned</td>
<td>Changed menstrual bleeding</td>
<td>Hepatic enzyme induction</td>
<td></td>
</tr>
<tr>
<td>St John's wort</td>
<td>8</td>
<td>None reported</td>
<td>Oral contraceptive long-term</td>
<td>None mentioned</td>
<td>Intermenstrual bleeding</td>
<td>Hepatic enzyme induction</td>
<td></td>
</tr>
<tr>
<td>St John's wort</td>
<td>F</td>
<td>None reported</td>
<td>Oral contraceptive</td>
<td>None mentioned</td>
<td>Intermenstrual (breakthrough) bleeding</td>
<td>Hepatic enzyme induction</td>
<td></td>
</tr>
<tr>
<td>St John's wort</td>
<td>F</td>
<td>None reported</td>
<td>Oral contraceptive</td>
<td>None mentioned</td>
<td>Intermenstrual (breakthrough) bleeding</td>
<td>Hepatic enzyme induction</td>
<td></td>
</tr>
<tr>
<td>St John's wort</td>
<td>F</td>
<td>No pathology reported</td>
<td>Oral contraceptive</td>
<td>None mentioned</td>
<td>Intermenstrual (breakthrough) bleeding</td>
<td>Hepatic enzyme induction</td>
<td></td>
</tr>
<tr>
<td>St John's wort</td>
<td>F/44y</td>
<td>No pathology reported</td>
<td>Oral contraceptive</td>
<td>None mentioned</td>
<td>Intermenstrual (breakthrough) bleeding</td>
<td>Hepatic enzyme induction</td>
<td></td>
</tr>
<tr>
<td>St John's wort</td>
<td>F/84y</td>
<td>Depression and anxiety</td>
<td>Nefazodone</td>
<td>None</td>
<td>Nausea, vomiting, headache</td>
<td>Synergistic serotonin uptake inhibition</td>
<td></td>
</tr>
<tr>
<td>St John's wort</td>
<td>F/78y</td>
<td>Depression</td>
<td>Sertraline</td>
<td>Calcium carbonate and conjugated estrogens</td>
<td>Dizziness, nausea, vomiting, headache</td>
<td>Synergistic serotonin uptake inhibition</td>
<td></td>
</tr>
<tr>
<td>St John's wort</td>
<td>M/64y</td>
<td>Depression</td>
<td>Sertraline</td>
<td>None</td>
<td>Nausea, epigastric pain, anxiety</td>
<td>Synergistic serotonin uptake inhibition</td>
<td></td>
</tr>
<tr>
<td>St John's wort</td>
<td>M/82y</td>
<td>Depression, status post left cerebrovascular accident</td>
<td>Sertraline</td>
<td>None</td>
<td>Nausea, vomiting, anxiety, confusion</td>
<td>Synergistic serotonin uptake inhibition</td>
<td></td>
</tr>
<tr>
<td>Herbs</td>
<td>Dosage/duration</td>
<td>Sex (M/F/age)</td>
<td>Diagnosis</td>
<td>Prescribed drug dosage/duration</td>
<td>Concomitant drugs</td>
<td>Clinical result of interaction</td>
<td>Possible mechanism</td>
</tr>
<tr>
<td>-------</td>
<td>----------------</td>
<td>---------------</td>
<td>-----------</td>
<td>---------------------------------</td>
<td>-------------------</td>
<td>-----------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>St John's wort</td>
<td>300mg tid for 2d</td>
<td>M/79y</td>
<td>Depression and type 1 diabetes mellitus</td>
<td>Sertraline 50 mg/d<sup>a</sup></td>
<td>Insulin</td>
<td>Nausea, anxiety, feelings of restlessness and irritability</td>
<td>Synergistic serotonin uptake inhibition</td>
</tr>
<tr>
<td>St John's wort</td>
<td>dosage unclear; for 5 wks</td>
<td>M/28y</td>
<td>Depression</td>
<td>Sertraline 50 mg/d for 5 wks</td>
<td>Testosterone (after post-orchidectomy)</td>
<td>Manic episode</td>
<td>Synergistic serotonin uptake inhibition</td>
</tr>
<tr>
<td>St John's wort</td>
<td>600 mg/d/day for 10d</td>
<td>F/50y</td>
<td>Asthma and depression</td>
<td>Paroxetine 40 mg/d for 8 mo. Replacing paroxetine with St John’s wort for 10d. After this period, an acute dose of 20mg</td>
<td>No other tranquilisers</td>
<td>Nausea, weakness, fatigue, groggy and lethargic state.</td>
<td>Synergistic serotonin uptake inhibition</td>
</tr>
<tr>
<td>St John’s wort</td>
<td>(0.3% hypericin) 300 mg/d for 2mo</td>
<td>F/42y</td>
<td>White</td>
<td>Theophylline 300mg bid for several months followed by 1 dose of 80mg bid</td>
<td>Furosemide, potassium, morphine, zolpidem, valproic acid, ibuprofen, amitriptyline, prednisone, zafirlukast, triamcinolone</td>
<td>Decreased theophylline levels</td>
<td>Hepatic enzyme induction</td>
</tr>
<tr>
<td>St John’s wort</td>
<td>0.3% hypericin</td>
<td>F/75y</td>
<td>Polymorbid</td>
<td>Phenprocoumon<sup>b</sup></td>
<td>None mentioned</td>
<td>Increased ‘Quick-Wert’ test (indicating decreased anticoagulant effect)</td>
<td>Hepatic enzyme induction</td>
</tr>
<tr>
<td>St John’s wort</td>
<td></td>
<td>F/79y</td>
<td>None reported</td>
<td>Warfarin 2.5y<sup>a</sup></td>
<td>None mentioned</td>
<td>Decreased INR (from 2.5-3.8 to 1.7)</td>
<td>Hepatic enzyme induction</td>
</tr>
<tr>
<td>St John’s wort</td>
<td></td>
<td>M/65y</td>
<td>None reported</td>
<td>Warfarin 4y<sup>a</sup></td>
<td>None mentioned</td>
<td>Decreased INR (from 2.4-3.6 to 2.0-2.1)</td>
<td>Hepatic enzyme induction</td>
</tr>
<tr>
<td>St John’s wort</td>
<td></td>
<td>M/76y</td>
<td>None reported</td>
<td>Warfarin 10y<sup>a</sup></td>
<td>None mentioned</td>
<td>Decreased INR (from 2.6 to 1.1)</td>
<td>Hepatic enzyme induction</td>
</tr>
<tr>
<td>St John’s wort</td>
<td></td>
<td>F/61y</td>
<td>None reported</td>
<td>Warfarin many years<sup>a</sup></td>
<td>None mentioned</td>
<td>Decreased INR (INR before treatment not available; INR after 1.2)</td>
<td>Hepatic enzyme induction</td>
</tr>
<tr>
<td>St John’s wort</td>
<td></td>
<td>F/84y</td>
<td>None reported</td>
<td>Warfarin more than 6mo<sup>b</sup></td>
<td>None mentioned</td>
<td>Decreased INR (from 2.9-3.6 to 1.5)</td>
<td>Hepatic enzyme induction</td>
</tr>
<tr>
<td>St John’s wort</td>
<td></td>
<td>F/56y</td>
<td>None reported</td>
<td>Warfarin<sup>b</sup></td>
<td>None mentioned</td>
<td>Decreased INR (from 2.6 to 1.5)</td>
<td>Hepatic enzyme induction</td>
</tr>
<tr>
<td>St John’s wort</td>
<td></td>
<td>F/85y</td>
<td>None reported</td>
<td>Warfarin long-term<sup>b</sup></td>
<td>None mentioned</td>
<td>Decreased INR (from 2.1-4.1 to 1.5)</td>
<td>Hepatic enzyme induction</td>
</tr>
</tbody>
</table>

^a Sex (and/or age) not reported.
^b Dose (and/or duration of the treatment) not reported.
^c Use of trade name is for identification purposes only, and does not imply endorsement.

^b bid = twice daily; cAMP = cyclic adenosine triphosphate; GABA = γ-aminobutyric acid; INR = international normalised ratio; LI160 = hypericum extract standardised to 0.3% hypericin; MAO = monoamine oxidase; tid = three times daily.
The latter study demonstrated that ginkgo has no effect on the hepatic microsomal drug oxidation system.

2.3 Ginseng

Ginseng (*Panax ginseng*) is marketed for a wide range of indications with tentative evidence in support of its efficacy.\(^7\) Case reports of suspected interactions with warfarin\(^3\) and the monoamine oxidase inhibitor (MAOI) phenelzine\(^3\) have been reported. In the former case,\(^3\) a decrease of INR was noted but because the patient took several other drugs concomitantly, causality is uncertain. In the latter cases,\(^3\) the patients experienced insomnia, headache, tremulousness and mania; causality is likely because inadvertent rechallenge resulted in similar symptoms.\(^3\) Three years later, one of these patients again ingested ginseng capsules (2 capsules for three days). She again experienced sleeplessness, tremors and headaches, but in contrast to her previous experience she became significantly more depressed, despite taking phenelzine 45 mg/day.\(^7\) Ginsenosides, one active ingredient of ginseng, inhibits cyclic adenosine monophosphate (cAMP) phosphodiesterase and thus increase cAMP levels.\(^8\) This effect may account partly for its psychoactive central effect both alone or in combination with MAOIs. However, the exact mechanism requires further study.

Ginseng decreased plasma alcohol concentrations in mice by delaying gastric emptying with ginsenosides being responsible for this phenomenon.\(^8,9\) The effect could explain the ginseng-induced enhancement of blood alcohol clearance noted in one clinical study.\(^5\) The authors also hypothesise that the effect could be due to induction of the essential components of the microsomal alcohol oxidising system, CYP system and nicotinamide adenine dinucleotide phosphate (NADPH)-cytochrome c reductase.\(^5\)

Interactions of ginseng with influenza vaccine have been mentioned in one report, albeit without sufficient details.\(^10\) A clinical trial\(^5\) reported no negative effects on 24 safety parameters in volunteers taking ginseng in combination with anti-influenza polyvalent vaccine. However, eight adverse events (mainly insomnia and nausea) were reported in the ginseng plus influenza vaccine group.

2.4 Kava

Kava (*Piper methysticum*) is an effective herbal anxiolytic.\(^2\) An interaction with alprazolam apparently caused a semicomatose state in one patient.\(^4\) Kava might have additive effects with benzodiazepines; both act on the same receptors and on the same areas of the CNS with increased GABA receptors.\(^8\)

Kava possesses dopamine antagonistic properties and cases of patients developing clinical signs suggestive of central dopaminergic antagonism have been described.\(^4\) The dopamine antagonistic properties of kava could explain the increase in the duration and number of 'off' periods in a patient with Parkinson’s treated concomitantly with levodopa.\(^4\)

The hypnotic action of both alcohol and kava has been shown to increase when administered in combination to mice.\(^8\) It is generally recommended not to take kava in conjunction with alcohol.\(^8\) However, one clinical study showed that kava did not influence safety-related performances in volunteers taking alcohol.\(^5\)

2.5 St. John’s Wort

St John’s wort (*Hypericum perforatum*) is effective for mild to moderate depression.\(^8\) As a monotherapy, St John’s wort has a most encouraging safety profile.\(^8\) However, numerous reports indicate the possibility of important interactions, particularly with drugs metabolised by the CYP monooxygenase enzyme system and with selective serotonin-reuptake inhibitors (SSRIs).

The enzyme-inducing properties of St John’s wort were investigated in five trials\(^6-7\) using either internal (6β-hydroxycortisol/cortisol ratio)\(^7,6\) or external probe substrates (dextromethorphan, alprazolam, caffeine).\(^67\) Although an experimental study in vitro\(^8\) and a clinical study did not yield the same results,\(^7\) four clinical studies\(^7,6\)
<table>
<thead>
<tr>
<th>Herbal medicine</th>
<th>Comedication dosage/duration</th>
<th>Study design</th>
<th>Sample size and description</th>
<th>Clinical result of interaction</th>
<th>Possible mechanism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Garlic[54] daily doses of aged garlic extract for 3mo (equivalent to 6-7 cloves of garlic daily)</td>
<td>Paracetamol (acetaminophen)</td>
<td>Before-after comparison</td>
<td>16 M (25.75 ± 3.96y)</td>
<td>Changes in pharmacokinetic variables</td>
<td>Not known</td>
</tr>
<tr>
<td>Ginkgo[55] 400 mg/d for 13 days</td>
<td>Phenazone (antipyrine) 10 mg/kg before and after ginkgo (day 14)</td>
<td>Randomised, placebo-controlled 3-way (phenytoin group served as a positive control)</td>
<td>25 M (15-35y)</td>
<td>Ginkgo (in contrast to phenytoin) does not affect antipyrine half-life</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Ginkgo[56] 80mg tid for 8 wks</td>
<td>LHRH and TRH (stimulation test) after 4 and 8 wks</td>
<td>Nonblind, before-after comparison</td>
<td>7 M (20-35y)</td>
<td>No changes in basal FSH, LH, prolactin and TSH levels</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Ginseng[57] (water extract yielding 50% of the dry weight of the root); 3g/65kg single dose</td>
<td>Alcohol 72g/65kg single dose along with ginseng</td>
<td>Before-after comparison, (1 week washout period)</td>
<td>14 M (25-35y)</td>
<td>Lowering of blood alcohol concentrations</td>
<td>Delayed gastric emptying by ginsenosides</td>
</tr>
<tr>
<td>Ginseng[58] (Ginsana® G115)e 100 mg/day for 12 wks</td>
<td>Influenza vaccine (Agrippal® 0.05 ml)* administered at wk 4 during ginseng treatment</td>
<td>Randomised, placebo-controlled, double-blind with 2 parallel groups</td>
<td>132 M and 95 F [114 ginseng (mean age 48y), 113 placebo (mean age 48.6y)], sex not reported</td>
<td>No significant differences in 24 safety parameters</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Kava[59] (kava extract WS1490) 100mg tid for 8d</td>
<td>Alcohol at individual dose to achieve a 0.05% blood concentration at days 1, 4 and 8 (concomitantly with kava)</td>
<td>Randomised, placebo-controlled, double-blind with parallel groups</td>
<td>10 M, 10 F (18-60y)</td>
<td>No effect on safety-related performances</td>
<td>Not applicable</td>
</tr>
<tr>
<td>St John’s wort[60] (LI 160) 300mg tid for 7d</td>
<td>Alcohol at individual dose to achieve a 0.45-0.8 mg/ml blood concentration at day 7 (concomitantly with St John’s wort)</td>
<td>Randomised, placebo-controlled, double-blind, crossover</td>
<td>16 M, 16 F (25-40y)</td>
<td>No changes in cognitive capacities</td>
<td>Not applicable</td>
</tr>
<tr>
<td>St John’s wort[61] (Aristofora®) 3 capsules daily for 90d; last day 6 capsules along with alcohol (each capsule containing 0.25mg hypericin)</td>
<td>Alcohol at individual doses to achieve a 0.05% blood concentration at day 15 (concomitantly with St John’s wort)</td>
<td>Placebo-controlled, 3-way, crossover (one group received a mixture of valerian and St John’s wort)</td>
<td>6 M, 12 F (mean age 45.6 ± 11.2)</td>
<td>St John’s Wort did not decrease alcohol-induced changes in vigilance (either alone or in combination with valerian)</td>
<td>Not applicable</td>
</tr>
<tr>
<td>St John’s wort[62] (LI 160) 900 mg/day for 14d</td>
<td>Amitriptyline 75mg bid for 14d along with St John’s wort</td>
<td>Nonblind</td>
<td>12 pts with depression (age and sex not reported)</td>
<td>Decreased plasma amitriptyline concentrations (21.7%) and of its metabolite nortriptyline (40.6%)</td>
<td>Induction of hepatic enzymes</td>
</tr>
<tr>
<td>St John’s wort[63] (LI 160) 300mg tid for 10d</td>
<td>Digoxin for 15d: days 1-4 administered alone; days 5-15 with St John’s wort</td>
<td>Single blind, placebo-controlled with parallel groups</td>
<td>13 M, 12 F (12 placebo and 13 treated) [22-32y]</td>
<td>Decreased plasma digoxin concentration - trough concentration (33.3%), AUC (25%) and Cmax (96%)</td>
<td>Induction of the intestinal P-glycoprotein</td>
</tr>
<tr>
<td>St John's wort[^64] (preparation standardised to 0.3% hypericin) 300mg tid for 16d</td>
<td>Indinavir: after achieving the steady state, single 800mg dose (before and after St John's wort treatment)</td>
<td>Nonblind, before-after comparison</td>
<td>6 M, 2 F (29-50y)</td>
<td>AUC of indinavir decreased 57%</td>
<td>Hepatic enzyme induction</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>St John's Wot[^65] (LI 160) 300 mg/day for 11d</td>
<td>Phenprocoumon 12mg, single dose before and after St John's wort or placebo (day 11)</td>
<td>Randomized, single blind, placebo-controlled, cross-over (2-week washout period)</td>
<td>10 healthy M (18-50y)</td>
<td>AUC of free phenprocoumon decreased 17.4%</td>
<td>Hepatic enzyme induction</td>
</tr>
<tr>
<td>St John's wot[^67] (standardised to 0.3% hypericin) 300mg tid for 14d</td>
<td>6β-Hydroxycortisol/cortisol ratio[^3]</td>
<td>Nonblind, before-after comparison</td>
<td>4 M, 9 F (18-45y)</td>
<td>Urinary excretion of 6β-hydroxycortisol/cortisol ratio increased (114%)</td>
<td>Hepatic enzyme induction</td>
</tr>
<tr>
<td>St John's wot[^68] (Solaray®, standardised to 0.3% hypericin) 300mg tid for 3d</td>
<td>Alprazolam 1mg in 3 or 2mg in 4 and dextromethorphan 30mg before and after St John's wort (day 3)</td>
<td>Before-after comparison</td>
<td>4 M, 3 F (24-32y)</td>
<td>AUC of alprazolam 2mg decreased 48%</td>
<td>Hepatic enzyme induction</td>
</tr>
<tr>
<td>St John's wot[^69] 300mg tid for 8d</td>
<td>Dextromethorphan 30mg before and after St John's wort (day 8)</td>
<td>Before-after comparison</td>
<td>16 (sex and age not reported)</td>
<td>Trend to increase the metabolism of dextromethorphan</td>
<td>Hepatic enzyme induction</td>
</tr>
<tr>
<td>St John's wot[^70] 300mg tid for 8d</td>
<td>Caffeine 200mg before and after St John's wort (day 8)</td>
<td>Before-after comparison</td>
<td>16 (sex and age not reported)</td>
<td>No changes in plasma and urine caffeine metabolite concentrations</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

a One gram of paracetamol (acetaminophen) was administered to each participant on five separate occasions: immediately before garlic; at the end of the first, second and third month of garlic; and finally at 1 month after cessation of garlic.

b Dose not reported.

c Basal physiological levels were measured.

d Increase in peak plasma paracetamol (acetaminophen) concentration of after 1 month garlic, increase in plasma paracetamol (acetaminophen) concentrations and decreased paracetamol (acetaminophen) renal clearance after 2 months’ treatment; increased in plasma acetaminophen glucuronide concentrations after 3 months’ garlic; increase in peak plasma acetaminophen sulphate concentration 1 month after garlic administration had ended.

e Use of trade name is for identification purposes, and does not imply endorsement.

f Erythrocyte sedimentation rate, haemoglobin, haematocrit, leucocytes, neutrophils, basophils, eosinophils, lymphocytes, monocytes, red blood cell count, albumin, glucose, blood urea nitrogen, creatinine, total protein, alkaline phosphatase, total bilirubin, aspartate amino transferase, alanine amino transferase, γ-glutamyl transpeptidase, lactic dehydrogenase, sodium, potassium, chloride.

AUC = area under the plasma concentration/time curve; **bid** = twice daily; **Cmax** = maximum plasma concentration; **FSH** = follicle stimulating hormone; **LH** = luteinising hormone; **LH** = luteinising hormone; **LIT60** = hypericum extract standardised to 0.3% hypericin; **LHRH** = luteinising hormone releasing hormone; **tid** = three times daily; **TRH** = thyrotropin releasing hormone; **TSH** = thyroid-stimulating hormone; **TSH** = thyroid-stimulating hormone; **γ**-glutamyl transpeptidase, lactic dehydrogenase, sodium, potassium, chloride.
showed an increase or a trend to increase the metabolic capacity of CYP enzymes.

In addition to the enzyme-inducing properties of St John’s wort, other evidence indicates that flavonoids contained in St John’s wort raise the activity of P-glycoprotein,\(^\text{[91]}\) which, in turn, increases the elimination of drugs. Probably via these mechanisms it has been shown to reduce the plasma concentrations of warfarin,\(^\text{[49]}\) phenprocoumon,\(^\text{[42,65]}\) oral contraceptives,\(^\text{[42,49]}\) cyclosporin,\(^\text{[42-47]}\) amitriptyline,\(^\text{[62]}\) theophylline,\(^\text{[53]}\) and the protease inhibitor indinavir.\(^\text{[64]}\) Plasma digoxin concentrations\(^\text{[63]}\) are also likely to be decreased through an induction of P-glycoprotein, as oxidative hepatic metabolism plays only a minor role in the elimination of digoxin.\(^\text{[92]}\)

When given in parallel with other SSRIs (sertraline, paroxetine) or serotonin nonadrenaline reuptake inhibitors (nefazodone), St John’s wort can cause symptoms of central serotonin excess as suggested by seven case reports.\(^\text{[50-52]}\) These effects could be the result of an additive effect on serotonin reuptake, as hyperforin in St John’s wort inhibits serotonin reuptake.\(^\text{[93,94]}\) The symptoms of central serotonergic syndrome include mental status changes, tremor, autonomic instability, gastrointestinal upsets, headache, myalgias, and motor restlessness.\(^\text{[95]}\) The syndrome can be serious, even fatal, particularly in the elderly. The serotonin receptor antagonist cyproheptadine is potentially useful in reversing some of these symptoms.

A brief episode of acute delirium, possibly induced by exposure to St John’s wort, valerian and loperamide has also been described.\(^\text{[48]}\) These symptoms could be a MAOI-induced reaction to a drug or food product, an interaction between St John’s wort and valerian, or an interaction of these herbal medicines with loperamide, which could theoretically induce a MAOI-drug reaction. A report has suggested that loperamide alone can cause delirium, although causality is unproven.\(^\text{[96]}\)

Finally, two clinical trials\(^\text{[60,61]}\) have suggested that St John’s wort did not change cognitive capacities\(^\text{[60]}\) or safety-related parameters (visual orientation, forced concentration, acoustic reaction time, choice reaction time, stress tolerance, vigilance and motor co-ordination) following co-administration with alcohol.\(^\text{[61]}\)

Given the widespread use of St John’s wort, the implications of the emerging evidence of interactions are serious. In many countries such as the US, UK and Sweden, extracts of St John’s wort are marketed as food supplements.\(^\text{[97]}\) Patients often self-medicate St John’s wort in the belief that herbal treatments are by definition free of risks.

2.6 Echinacea

Echinacea (Echinacea angustifolia, Echinacea pallida, Echinacea purpurea) is used for stimulating the immune system. The clinical evidence in support is promising but not fully conclusive.\(^\text{[98]}\) Theoretically, echinacea extracts might decrease the effects of immunosuppressants.\(^\text{[10,17]}\) However, no clinical cases of drug interactions have been reported.

2.7 Saw Palmetto

Saw palmetto (Serenoa repens) is an effective symptomatic short-term treatment for benign prostate hyperplasia, possibly through hormonal effects.\(^\text{[99]}\) Therefore, it could interact with concomitant hormone therapies\(^\text{[10,17]}\) but no clinical evidence exists for this theoretical possibility. There are no suggestions of interactions with any other medication.

3. Limitations

The data presented in section 2 also have obvious limitations. For many of the interactions listed, our understanding of the mechanisms involved is incomplete (tables I and II). Much of the literature on herbal medicine is limited by the fact that the authors of clinical reports fail to adequately define the botanicals used.\(^\text{[100]}\) All pharmacologically active herbal extracts are associated with varying degrees of toxicity in their own right.\(^\text{[101]}\) Often case reports do not allow a clear distinction between adverse events due to toxicity and those caused by herb-drug interactions. These limitations amount
to a significant challenge for further research in this area.

4. Conclusion
Herb-drug reactions are a reality and can present a serious threat to human health. Healthcare professionals should be aware of this potential and researchers should strive to fill the numerous gaps in our present understanding of this problem.

Acknowledgements

The authors wish to thank Dr Max Pittler and Clare Stevinson (both from the Department of Complementary Medicine, University of Exeter, UK) for their help.

References

1. Blumenthal M. Herb market levels after five years of boom. HerbalGram 1999; 47: 64-5
32. Sunter WE. Warfarin and garlic. Pharm J 1991; 246: 772
Wort (Hypericum perforatum). Transplantation 2000; 69: 2229-32
48. Khawaja IS, Marotta RF, Lippmann S. Herbal medicines as a factor in delirium. Psychiatrische services 1999; 50: 969-70
52. Gordon JB. SSRIs and St John’s wort: possible toxicity? Am Fam Physiol 1989; 30: 96-105
77. Stancheva SL, Alovia LG. Ginsenoside Rg1 inhibits the brain central nervous system activity of the aqueous and lipid ex- tracts of ginkgo biloba. Life Sci 1999; 64: 153-60

Correspondence and offprints: Dr Edzard Ernst, Department of Complementary Medicine, School of Postgraduate Medicine and Health Sciences, University of Exeter, 25 Victoria Park Road, Exeter EX2 4NT, United Kingdom.
E-mail: E.Ernst@exeter.ac.uk